Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(10): eadh0477, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457496

RESUMO

In recent years, the application of metagenomics techniques has advanced our understanding of plankton communities and their global distribution. Despite this progress, the relationship between the abundance distribution of diatom species and varying marine environmental conditions remains poorly understood. This study, leveraging data from the Tara Oceans expedition, tests the hypothesis that diatoms in sampled stations display a consistent species abundance distribution structure, as though they were sampled from a single ocean-wide metacommunity. Using a neutral sampling theory, we thus develop a framework to estimate the structure and diversity of diatom communities at each sampling station given the shape of the species abundance distribution of the metacommunity and the information of a reference station. Our analysis reveals a substantial temperature gradient in the discrepancies between predicted and observed biodiversity across the sampled stations. These findings challenge the hypothesis of a single neutral metacommunity, indicating that environmental differences substantially influence both the composition and structure of diatom communities.


Assuntos
Diatomáceas , Plâncton , Biodiversidade , Oceanos e Mares , Ecossistema
2.
ISME Commun ; 3(1): 83, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596349

RESUMO

For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean. Here, we conducted comparative analyses of trans-kingdom community assemblages thriving in the mesopelagic oxygen minimum zone (OMZ), mesopelagic oxic, and their epipelagic counterparts. We identified nine distinct types of intermediate water masses that correlate with variation in mesopelagic community composition. Furthermore, oxygen, NO3- and particle flux together appeared as the main drivers governing these communities. Novel taxonomic signatures emerged from OMZ while a global co-occurrence network analysis showed that about 70% of the abundance of mesopelagic plankton groups is organized into three community modules. One module gathers prokaryotes, pico-eukaryotes and Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from oxic regions, and the two other modules are enriched in OMZ prokaryotes and OMZ pico-eukaryotes, respectively. We hypothesize that OMZ conditions led to a diversification of ecological niches, and thus communities, due to selective pressure from limited resources. Our study further clarifies the interplay between environmental factors in the mesopelagic oxic and OMZ, and the compositional features of communities.

3.
Elife ; 112022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920817

RESUMO

Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the 'seascape') by analyzing metagenomes of plankton communities sampled across oceans during the Tara Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on a characteristic timescale of community dynamics going beyond simple seasonality or life history transitions of plankton.


Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, viruses and other microscopic organisms essential for the health of the planet. These 'marine plankton' are unable to swim against currents and should therefore be constantly on the move, yet previous studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. However, proving this theory has been challenging; collecting plankton is logistically difficult, and it is often impossible to distinguish between species simply by examining them under a microscope. However, within the last decade, a research schooner called Tara has travelled the globe to gather thousands of plankton samples. At the same time, advances in genomics have made it possible to identify species based only on fragments of their DNA sequence. To understand the hidden geography of plankton communities in Earth's oceans, Richter et al. pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist the flow of water, various planktonic species which live close to the surface manage to occupy distinct, stable provinces shaped by currents. Different sizes of plankton are distributed in different sized provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similarities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton communities. Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. These results could allow deeper investigation by marine modellers, ecologists, and evolutionary biologists. Meanwhile, work is already underway to investigate how climate change might impact this hidden geography.


Assuntos
Ecossistema , Plâncton , Genômica , Geografia , Oceanos e Mares , Plâncton/genética
4.
Science ; 376(6589): 156-162, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389782

RESUMO

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Assuntos
Genoma Viral , Vírus de RNA , Vírus , Evolução Biológica , Ecossistema , Oceanos e Mares , Filogenia , RNA , Vírus de RNA/genética , Viroma/genética , Vírus/genética
5.
Sci Adv ; 8(3): eabj9466, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044817

RESUMO

Diatoms are fast-growing and winning competitors in aquatic environments, possibly due to optimized growth performance. However, their life cycles are complex, heteromorphic, and not fully understood. Here, we report on the fine control of cell growth and physiology during the sexual phase of the marine diatom Pseudo-nitzschia multistriata. We found that mating, under nutrient replete conditions, induces a prolonged growth arrest in parental cells. Transcriptomic analyses revealed down-regulation of genes related to major metabolic functions from the early phases of mating. Single-cell photophysiology also pinpointed an inhibition of photosynthesis and storage lipids accumulated in the arrested population, especially in gametes and zygotes. Numerical simulations revealed that growth arrest affects the balance between parental cells and their siblings, possibly favoring the new generation. Thus, in addition to resources availability, life cycle traits contribute to shaping the species ecological niches and must be considered to describe and understand the structure of plankton communities.


Assuntos
Diatomáceas , Ciclo Celular , Demografia , Diatomáceas/genética , Plâncton , Reprodução/fisiologia
6.
Science ; 374(6567): 594-599, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709919

RESUMO

Eukaryotic plankton are a core component of marine ecosystems with exceptional taxonomic and ecological diversity, yet how their ecology interacts with the environment to drive global distribution patterns is poorly understood. In this work, we use Tara Oceans metabarcoding data, which cover all major ocean basins, combined with a probabilistic model of taxon co-occurrence to compare the biogeography of 70 major groups of eukaryotic plankton. We uncover two main axes of biogeographic variation. First, more-diverse groups display clearer biogeographic patterns. Second, large-bodied consumers are structured by oceanic basins, mostly through the main current systems, whereas small-bodied phototrophs are structured by latitude and follow local environmental conditions. Our study highlights notable differences in biogeographies across plankton groups and investigates their determinants at the global scale.

7.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34452910

RESUMO

Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change and forecasted the most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios while identifying plausible plankton bioindicators for ocean monitoring of climate change.

8.
Nat Rev Microbiol ; 18(8): 428-445, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32398798

RESUMO

A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.


Assuntos
Ecossistema , Plâncton/crescimento & desenvolvimento , Animais , Biodiversidade , Biologia/métodos , Mudança Climática , Humanos , Oceanos e Mares
9.
Mol Ecol ; 29(2): 292-307, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31793138

RESUMO

The planktonic tunicates appendicularians and thaliaceans are highly efficient filter feeders on a wide range of prey size including bacteria and have shorter generation times than any other marine grazers. These traits allow some tunicate species to reach high population densities and ensure their success in a favourable environment. However, there are still few studies focusing on which genes and gene pathways are associated with responses of pelagic tunicates to environmental variability. Herein, we present the effect of food availability increase on tunicate community and gene expression at the Marquesas Islands (South-East Pacific Ocean). By using data from the Tara Oceans expedition, we show that changes in phytoplankton density and composition trigger the success of a dominant larvacean species (an undescribed appendicularian). Transcriptional signature to the autotroph bloom suggests key functions in specific physiological processes, i.e., energy metabolism, muscle contraction, membrane trafficking, and proteostasis. The relative abundance of reverse transcription-related Pfams was lower at bloom conditions, suggesting a link with adaptive genetic diversity in tunicates in natural ecosystems. Downstream of the bloom, pelagic tunicates were outcompeted by copepods. Our work represents the first metaomics study of the biological effects of phytoplankton bloom on a key zooplankton taxon.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Urocordados/genética , Animais , Ecologia , Ecossistema , Transcriptoma/genética , Urocordados/classificação
10.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730851

RESUMO

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Assuntos
Biodiversidade , Plâncton/fisiologia , Água do Mar/microbiologia , Geografia , Modelos Teóricos , Oceanos e Mares , Filogenia
11.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730850

RESUMO

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Assuntos
Regulação da Expressão Gênica , Metagenoma , Oceanos e Mares , Transcriptoma/genética , Geografia , Microbiota/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar/microbiologia , Temperatura
12.
Mol Biol Evol ; 36(11): 2522-2535, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259367

RESUMO

Diatoms (Bacillariophyta), one of the most abundant and diverse groups of marine phytoplankton, respond rapidly to the supply of new nutrients, often out-competing other phytoplankton. Herein, we integrated analyses of the evolution, distribution, and expression modulation of two gene families involved in diatom nitrogen uptake (DiAMT1 and DiNRT2), in order to infer the main drivers of divergence in a key functional trait of phytoplankton. Our results suggest that major steps in the evolution of the two gene families reflected key events triggering diatom radiation and diversification. Their expression is modulated in the contemporary ocean by seawater temperature, nitrate, and iron concentrations. Moreover, the differences in diversity and expression of these gene families throughout the water column hint at a possible link with bacterial activity. This study represents a proof-of-concept of how a holistic approach may shed light on the functional biology of organisms in their natural environment.

13.
Cell ; 177(5): 1109-1123.e14, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031001

RESUMO

Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (inter-population diversity) and microdiversity (intra-population genetic variation). These patterns sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models.


Assuntos
Organismos Aquáticos/genética , Biodiversidade , Vírus de DNA/genética , DNA Viral/genética , Metagenoma , Microbiologia da Água
14.
Mol Ecol Resour ; 19(2): 526-535, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30575285

RESUMO

Comparison of the molecular diversity in all plankton populations present in geographically distant water columns may allow for a holistic view of the connectivity, isolation and adaptation of organisms in the marine environment. In this context, a large-scale detection and analysis of genomic variants directly in metagenomic data appeared as a powerful strategy for the identification of genetic structures and genes under natural selection in plankton. Here, we used discosnp++, a reference-free variant caller, to produce genetic variants from large-scale metagenomic data and assessed its accuracy on the copepod Oithona nana in terms of variant calling, allele frequency estimation and population genomic statistics by comparing it to the state-of-the-art method. discosnp ++ produces variants leading to similar conclusions regarding the genetic structure and identification of loci under natural selection. discosnp++ was then applied to 120 metagenomic samples from four size fractions, including prokaryotes, protists and zooplankton sampled from 39 tara Oceans sampling stations located in the Atlantic Ocean and the Mediterranean Sea to produce a new set of marine genomic markers containing more than 19 million of variants. This new genomic resource can be used by the community to relocate these markers on their plankton genomes or transcriptomes of interest. This resource will be updated with new marine expeditions and the increase of metagenomic data (availability: http://bioinformatique.rennes.inria.fr/taravariants/).


Assuntos
Organismos Aquáticos/classificação , Marcadores Genéticos , Genética Populacional/métodos , Técnicas de Genotipagem/métodos , Metagenômica/métodos , Plâncton/genética , Animais , Organismos Aquáticos/genética , Oceano Atlântico , Mar Mediterrâneo
15.
Ann Rev Mar Sci ; 11: 271-305, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230995

RESUMO

The water mass transformation (WMT) framework weaves together circulation, thermodynamics, and biogeochemistry into a description of the ocean that complements traditional Eulerian and Lagrangian methods. In so doing, a WMT analysis renders novel insights and predictive capabilities for studies of ocean physics and biogeochemistry. In this review, we describe fundamentals of the WMT framework and illustrate its practical analysis capabilities. We show how it provides a robust methodology to characterize and quantify the impact of physical processes on buoyancy and other thermodynamic fields. We also detail how to extend WMT to insightful analysis of biogeochemical cycles.


Assuntos
Modelos Teóricos , Água do Mar/química , Termodinâmica , Movimentos da Água , Ecossistema , Oceanos e Mares , Fenômenos Físicos , Salinidade
16.
Sci Rep ; 8(1): 11317, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054494

RESUMO

The heat contained in the ocean (OHC) dominates the Earth's energy budget and hence represents a fundamental parameter for understanding climate changes. However, paucity of observational data hampers our knowledge on OHC variability, particularly in abyssal areas. Here, we analyze water characteristics, observed during the last three decades in the abyssal Ionian Sea (Eastern Mediterranean), where two competing convective sources of bottom water exist. We find a heat storage of ~1.6 W/m2 - twice that assessed globally in the same period - exceptionally well-spread throughout the local abyssal layers. Such an OHC accumulation stems from progressive warming and salinification of the Eastern Mediterranean, producing warmer near-bottom waters. We analyze a new process that involves convectively-generated waters reaching the abyss as well as the triggering of a diapycnal mixing due to rough bathymetry, which brings to a warming and thickening of the bottom layer, also influencing water-column potential vorticity. This may affect the prevailing circulation, altering the local cyclonic/anticyclonic long-term variability and hence precondition future water-masses formation and the redistribution of heat along the entire water-column.

17.
Nat Commun ; 9(1): 373, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371626

RESUMO

While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry.


Assuntos
Organismos Aquáticos , Eucariotos/genética , Células Eucarióticas/metabolismo , Metagenoma , Filogenia , Zooplâncton/genética , Sequência de Aminoácidos , Animais , Atlas como Assunto , Bactérias/classificação , Bactérias/genética , Biodiversidade , Ecossistema , Eucariotos/classificação , Células Eucarióticas/citologia , Metagenômica/métodos , Oceanos e Mares , Fitoplâncton/classificação , Fitoplâncton/genética , Água do Mar , Vírus/classificação , Vírus/genética , Zooplâncton/classificação
18.
Nat Commun ; 9(1): 310, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358710

RESUMO

Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology.

19.
Sci Rep ; 7(1): 3826, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630429

RESUMO

Diatoms are a fundamental microalgal phylum that thrives in turbulent environments. Despite several experimental and numerical studies, if and how diatoms may profit from turbulence is still an open question. One of the leading arguments is that turbulence favours nutrient uptake. Morphological features, such as the absence of flagella, the presence of a rigid exoskeleton and the micrometre size would support the possible passive but beneficial role of turbulence on diatoms. We demonstrate that in fact diatoms actively respond to turbulence in non-limiting nutrient conditions. TURBOGEN, a prototypic instrument to generate natural levels of microscale turbulence, was used to expose diatoms to the mechanical stimulus. Differential expression analyses, coupled with microscopy inspections, enabled us to study the morphological and transcriptional response of Chaetoceros decipiens to turbulence. Our target species responds to turbulence by activating energy storage pathways like fatty acid biosynthesis and by modifying its cell chain spectrum. Two other ecologically important species were examined and the occurrence of a morphological response was confirmed. These results challenge the view of phytoplankton as unsophisticated passive organisms.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Regulação da Expressão Gênica/fisiologia , Transcriptoma
20.
Sci Rep ; 7(1): 4180, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646131

RESUMO

Anchovies represent the largest world's marine fish catches and the current threats on their populations impose a sustainable exploitment based on sound scientific information. In the European anchovy (Engraulis encrasicolus), the existence of several populations has been proposed but a global view is missing. Using a multidisciplinary approach, here we assessed the divergence among different ecotypes and its possible causes. SNPs have revealed two functionally distinct ecotypes overlapping in the Central Mediterranean, with one ecotype confined near the river estuaries. The same SNPs outliers also segregated two distinct populations in the near Atlantic, despite their large spatial distance. In addition, while most studies suggested that adaptation to low salinity is key to divergence, here we show that the offshore ecotype has higher environmental tolerance and an opportunistic feeding behaviour, as assessed by the study of environmental conditions, anchovy diet and trophic levels, and passive egg dispersal. These results provide insights into the anchovy evolutionary history, stressing the importance of behaviour in shaping ecotypes.


Assuntos
Peixes/genética , Variação Genética , Animais , Biomassa , Dieta , Meio Ambiente , Europa (Continente) , Loci Gênicos , Genética Populacional , Geografia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...